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ABSTRACT
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Drag and turbulence in steady stratified flows over “abyssal hills” have been

parameterized using linear theory and estimated rates of energy cascade due to

wave-wave interactions. This theory has no drag or energy loss due to large-

scale bathymetry because waves with intrinsic frequency less than the Coriolis

frequency are evanescent. Previous numerical work has tested the theory by

high-passing the topography and estimating the resulting turbulence. Here we

show that the large-scale evanescent part of the internal wavefield is actually

non-linear and turbulent, and that the dissipation is approximately twice that

of the waves generated by the small-scale bathymetry. Simulations contain-

ing both small- and large-scale bathymetry have more dissipation than just

adding the large- and small-scale dissipations together, so the scales couple.

The large-scale turbulence is localized, generally in the lee of large obsta-

cles, presenting an important real-world sampling problem. Medium-scale

regional or global models partially resolve the “non-propagating” wavenum-

bers, leading to the question of whether they need the large-scale energy loss

to be parameterized. Varying the resolution of the simulations indicates that

if the ratio of grid cell height to width is less than the root-mean-square of

the topographic slope, then the dissipation is over-estimated in coarse models

(by up to 25%); conversely it can be greatly underestimated (by up to a factor

of two) if the ratio is greater than the root-mean-square slope. Most regional

simulations are likely in the second regime, and should have extra drag added

to represent the large-scale bathymetry, and the deficit is at least as large as

that parameterized for “abyssal hills”.
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1. Introduction28

Slowly varying stratified flow over topography occurs throughout the ocean either due to mean29

flows or eddies. By creating internal waves that have to break in the water column, mean flow over30

rough topography is one of the possible pathways by which the interior of the ocean is mixed, with31

long-term consequences for overturning circulations and distribution of tracers in the ocean.32

The linear theory for steady stratified flow over topography is due to Bell (1975), who derived33

how to calculate the rate energy is removed from the mean flow over a topography composed of34

a broad range of spectral components. Rate of energy lost implies a form drag over the topog-35

raphy of F = U0D, where F is the radiated energy, D is the form drag and U0 the mean flow36

speed. Here we will generally deal with F , but it is directly proportional to the drag. Tests with37

two-dimensional topography indicate that Bell’s theory is relevant for oceanic scales (Nikurashin38

and Ferrari 2010), though corrections need to be made if the topography varies in the cross-flow39

direction (Nikurashin et al. 2014), with substantially less generation of internal waves for large40

topography (Nh/U0 large, where is h the root-mean-squared topographic height and N the buoy-41

ancy frequency. This is called the “steepness parameter” by Nikurashin et al. (2014), we will call42

the “inverse Froude number”). However, freely propagating internal waves are only generated43

for topographic wavenumbers k > f/U0, where f is the Coriolis frequency. For larger scale to-44

pography the response is evanescent, with a vertical decay scale given by
(

f 2−U2
0 k2)1/2

/ Nk.45

For large wavelengths, this decay scale can reach hundreds of meters. In their work comparing46

to theory, (Nikurashin et al. 2014) bandpassed the bathymetry so that f/U0 < k < N/U0. The47

extra mixing and drag due to these “abyssal hills” is believed to be significant to accurate global48

numerical simulations (i.e. Trossman et al. 2016), and in calculations of overturning circulations49

(i.e. de Lavergne et al. 2016).50
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This leads to the central question of this paper: how important is the large-wavenumber topog-51

raphy to the drag and turbulence on the mean flow? In order to apply Bell’s theory the inverse52

Froude number, Nh/U0 needs to be small. For a flow over bandpassed topography, this is close to53

being met for abyssal oceanic scales, where typical values used by (Nikurashin et al. 2014) were54

N = 10−3 rad s−1, h = 80 m, and U0 = 0.1 ms−1, so Nh/U0 ≈ 0.8. However, the full bathymet-55

ric spectrum that they bandpassed from (and we use below) has a root-mean-squared height of56

h = 305 m, so a characteristic Nh/U0 ≈ 3. This means that the large-scale part of the red topo-57

graphic spectrum is non-linear and not amenable to linear treatment (Bell 1975). Rather, upstream58

blocking and downstream hydraulic effects are predicted to be important (Baines 1995; Klymak59

et al. 2010), as well as an increased tendency for the flow to go around obstacles in the cross-flow60

(Nikurashin et al. 2014).61

Here we report a number of simulations based on those by Nikurashin et al. (2014). As described62

in section 2, simulations are made over three types of bathymetry from the same spectrum used by63

Nikurashin et al. (2014), one where the topography has been BANDPASSED, as they present, one64

where the topography has been LOWPASSED at the same low wavenumber used in the bandpass,65

and a third where the FULL bathymetric spectrum is used (small-cap typography indicates the66

bathymetry in what follows). Because we need to resolve the large scales, these model runs are67

carried out on a very large domain. The results for simulations over these topographies at four68

different mean flow speeds are presented (section 3), showing that the large-scale LOWPASSED69

topography has approximately twice the dissipation of the small-scale (BANDPASS), and all the70

bathymetry scales together (FULL) have somewhat more than the sum of the two simulations71

across the velocities investigated. The implications for sampling are briefly discussed (section 4)72

due to the localized nature of the turbulence generated by the large-scale topography. We also73
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investigate whether the turbulence and drag from the large-scale topography will be represented in74

regional- and global-scale ocean models.75

2. Model configuration76

Here we use a similar model machinery to (Nikurashin et al. 2014), wherein we assume a dou-77

bly periodic domain with constant stratification and a mean flow in the x-direction forced over78

rough topography. The strength of the flow maintained by a body force meant to simulate an ex-79

ternally imposed surface pressure gradient. Because the full-resolution ∆x = ∆y = 100 m model80

is expensive, we spin the model up using a coarse-resolution model over the same domain with81

∆x = ∆y≈ 1000 m. The runs were carried out over a doubly periodic lateral domain of 409.6 km82

in x, and 118.4 km in the y direction. Total simulation depth was 4000 m, with ∆z = 10 m at all83

depths. We needed a large lateral domain in order to capture enough variance in the large-scale84

topography.85

a. Stratification, forcing, and spinup86

The model is run with a constant initial stratification of N = 10−3 s−1. An initial uniform veloc-87

ity was set in the x-direction (U0 = 0.02,0.05,0.1,0.15 ms−1), and momentum was maintained in88

the flow using a universal body force in the y-direction: FB =+ fU0. We chose f =+10−4 rad s−1.89

Coarse 1-km runs were spun up for 200 h. These runs had weak relaxation to the background90

stratification in a region that covered 25% of the domain in the y-direction, and the whole domain91

in the x-direction. The fine-resolution runs had no buoyancy relaxation. There was a loss of92

stratification near the topography in the simulations (FIG. 1b), which is unavoidable given the93

410-km along-flow domain length (47-d transit time at 0.1 ms−1) without resorting to a-physical94

forcing in the interior of the domain of interest.95
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b. Bathymetry96

The basic bathymetry used for the simulations is a stochastic version of the bathymetric spectrum97

used in Nikurashin et al. (2014), given by:98

P2D(k, l) =
2πH2 (µ−2)

k0l0

(
1+

k2

k2
0
+

l2

l2
0

)−µ/2

(1)

where H = 305 m is the root-mean-square of the topographic height, µ = 3.5 is a fit parameter99

setting the high-wavenumber slope, and k0 = l0 = 1.8× 10−4 radm−1 are fit parameters that set100

the wavelength at which the spectrum of the topography starts to flatten out (FIG. 2, gray dashed101

spectrum).102

Three variations on this topography are used. The FULL topography contains variance at all103

wavenumbers (FIG. 2, red line), bounded at the large scale by the domain size, and at the small104

scales by the grid resolution. The BANDPASS topography (FIG. 2, blue line) is composed of105

wavenumbers f/U0 < |k| < N/U0, and the LOWPASS topography of wavenumbers |k| < U0/ f ,106

which corresponds to a wavelength of 6 km.107

The qualitative effect on the flow of the low-wavenumber topography is clear from an example108

cross-section (FIG. 1a). There are peaks and valleys such that the FULL topography spans 1250109

m of water depth. The scale of this topography strongly affects the inverse topographic Froude110

number Nh/U , which is approximately 0.8 for the BANDPASS topography, but greater than 3 for111

the FULL topography. The goal of this paper is to determine the effect this large-scale topography112

has on the turbulence.113

c. Resolution114

All models had vertical resolution of 10 m over 4000 m depth. For numerical efficiency, the115

models were run for 200 h of spinup at approximately 1-km horizontal resolution over a 409.60116
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km by 118.40 km domain (nx = 416, and ny = 128). These coarse runs were then interpolated117

laterally onto (exactly) 100-m horizontal resolution models and run for another 20 h. There were a118

few valleys where extrapolation was necessary, so the flow was set to the background flow speed,119

and the density to the background density profile in these regions. The time scales work well120

because it is the large-scale near-inertial internal waves that are slow to propagate in the vertical,121

whereas the smaller-scale waves setup quite rapidly. We diagnose the rate of change of energy in122

the energy budgets below, and the residual is small.123

d. Model configuration124

The MITgcm was used for all simulations (Marshall et al. 1997), in a manner analogous to previ-125

ous work at similar scales (Buijsman et al. 2014; Klymak et al. 2016). Background explicit vertical126

and horizontal viscosity and diffusivity are kept low (Kρ = ν = 10−5 m2 s−1) except in the pres-127

ence of resolved density overturns where the vertical viscosity and diffusions are increased in a128

manner consistent with the expected Thorpe scale (Klymak and Legg 2010). There is also numeri-129

cal diffusivity and dissipation due to the second-order flux-limiting temperature advection scheme130

(tempAdvScheme=77; see the MITgcm manual). For the work carried out here, the terms in the131

energy budget are all calculated and the residual is identified as the dissipation. However, the spa-132

tial distribution of explicit dissipation (calculated from the explicit viscosities and local shears) is133

similar to the inverse energy budgets. The model is run in hydrostatic mode for these simulations.134

3. Results135

a. Overview of simulated flows136

Example slices from the simulations illustrate the differences between the bathymetries (FIG. 3137

and FIG. 4). The BANDPASS bathymetry simulations yield a bottom-intensified (almost) steady138
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internal wave field that has radiated energy through the domain (FIG. 3c). Directly near the sea139

floor there is evidence of enhanced numerical dissipation due to the flux-limiting advection scheme140

(FIG. 4c) as evinced by the pixelation of the velocity field at these depths.1141

The flow over the FULL and LOWPASS bathymetry shows the impact of including the large-142

scale bathymetry (FIG. 3a,b). First, there are approximately 100-km-scale regions of barotropic143

acceleration and deceleration due to the inhomogeneous nature of the bottom form drag. Further,144

there are thick regions of acceleration and deceleration near the topography of the same order as145

the strength of the forcing. These regions scale in thickness roughly as ∆ = πU0/N ≈ 300m for146

the flows here (see below where we change U0) and represent the thickness of the active layer of147

the flow near the bathymetry (i.e. Klymak et al. 2010). These regions are the same order as the148

bathymetric scale, so the flow is substantially non-linear, with blocking, steering, and hydraulic149

responses all expected phenomena.150

Also of note is the existence of radiating internal waves in LOWPASS solutions, despite there151

being no topographic variance for wavenumbers k > N/U0 (FIG. 4b). These waves have rela-152

tively high amplitudes, and are because the local flow over the bathymetry is faster than the mean153

flow, making f/U < f/U0; note that the clearest examples of wavepackets are seen in regions of154

enhanced near-bottom velocities (FIG. 3b).155

The flows over the large-scale topography have variance out to low wavenumbers, as confirmed156

by looking at lateral temperature spectra above the topography (FIG. 5). The BANDPASS run, as157

expected, has variance that is largely confined in the freely propagating regime. This energy drops,158

particularly for large scales, with distance from the topography (FIG. 5b). For the runs with large-159

1We could remove these numerical artifacts by increasing our explicit viscosity, but at the expense of decreasing our simulated Reynolds number

away from the topography. The conceit used in this paper is that the numerical dissipation occurs in highly non-linear regions anyway, and reflects

a cascade to turbulence.
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scale topography, there is substantial variance at large scales (FIG. 5a, red and purple lines). By160

2300 m depth, this variance also drops, and drops selectively at the smaller scales. While there is161

undoubtably some non-linearity in this response, it is consistent with Bell’s solutions that predict162

an exponential decay of the linear response with height above the topography proportional to the163

horizontal wavenumber, k.164

b. Laterally averaged energy budgets165

We form an energy budget of the simulated flows that we then integrate laterally (and then166

vertically) to determine the important terms, and take a residual to get the dissipation in the model.167

We linearize the potential energy term, which given the relatively small vertical displacements is168

an acceptable approximation, and use a Boussinesq approximation, so that169

E =
1
2

u2 +
1
2

g
N2

b

(
ρ ′

ρ0

)2

(2)

where u is the velocity vector, g the acceleration due to gravity, N2
b =− g

ρ0

dρb
dz is the square of the170

background buoyancy frequency, ρ ′ = ρ(x,y,z, t)− ρb(z) is the density anomaly relative to the171

background density profile ρb(z), and ρ0 = 1000 kgm−3 is the reference density.172

The background density profile ρb(z) is calculated from the modeled density field following173

Tseng and Ferziger (2001). Akin to the sorting procedure proposed by Winters et al. (1995), the174

cumulative distribution of water area as a function of density is calculated and matched to the175

cumulative distribution of water area as a function of depth. Interpolating from one distribution176

to the other gives the depth of each density in the distribution, and mapping back to depth gives a177

profile of density that is sorted by depth2. The background density gradient changes (slightly) in178

the hour of simulation that we form our energy budget over, allowing us to calculate the change in179

2the computational advantage is that a histogram is far easier to form than sorting and re-distributing the fluid, particularly in a convoluted

geometry, though the grid cells all must be the same size
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background potential energy in the model (EB) between model snapshots as:180

EB =
1
V

∫ 0

−H
A(z) ρb gz dz (3)

where V is the total volume of water.181

The horizontally averaged energy budget is then:182

dE
dt

=− d
dz

wp− d
dz

wE + fU0v−D (4)

where w is the vertical velocity, p = P−P0
ρ0

the pressure anomaly compared to a reference pressure183

profile P0(z) =−
∫ 0

z ρ0gdz, fU0v is the energy input via the body force, and D is the residual due184

to dissipation and changes in the background potential energy (Eb). The first two terms on the185

right-hand side each integrate to zero in the vertical, but serve to redistribute energy vertically in186

the water column. The divergence of the nonlinear vertical advection of energy is non-zero, and187

largely in opposition to the wave pressure work divergence. The net effect is that the dissipation188

is inferred to occur slightly above where the energy is put into the system by the body force. For189

readers that prefer a form-drag formulation, note that in this system the imposed body force can190

be shown to be identically equal to the work done by the form-drag on the flow.191

1) ENERGY CHANGES WITH TOPOGRAPHY192

The vertical integral of the energy budgets show that the simulations are not perfectly in steady193

state, with the rate of change term (FIG. 6, red line) varying between 5% and 30% of the body force194

term (FIG. 6, purple line). We consider this an uncertainty in the energy budget - if allowed to run195

to full steady state, it is possible that the dissipation would increase, or that the rate of conversion196

(as represented by the body force) would go down. So below, we use this to assign an uncertainty197

to the dissipation estimate, putting the “dissipation” between the body force and the residual.198
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The vertical integral of the energy budget shows the clear difference between the simulations199

over the different topography types. The BANDPASS simulation has the least amount of energy200

loss from the mean flow of 11.7± 0.3 mWm−2 (FIG. 6c) concentrated near the seafloor in a201

thin layer approximately 300 m thick This corresponds very well with the 10 mWm−2 of energy202

conversion found by Nikurashin et al. (2014) for similar parameters. However, when just the203

LOWPASS bathymetry is used, there is substantially more dissipation (21.0± 4.0 mWm−2) than204

the BANDPASS simulation. This is because the flow is blocked or accelerated in regions dues to205

the large-scale topography.206

The FULL topographic simulation has more dissipation than the other two simulations com-207

bined (39.5± 0.8 mWm−2, FIG. 6a). Dissipation extends higher into the water column than the208

BANDPASS simulation, partially because the topography extends higher, but also because turbu-209

lent features are on the order πU/N0 ≈ 300 m high (FIG. 4a). Overall, the high dissipation covers210

about 800 m of depth. (Note that we have not presented dissipation versus height off bottom,211

which is not possible to do with the residual budgets we are making here).212

The background potential energy changes significantly in these simulations, with a total be-213

tween 15% and 40% of the energy budget residual. These simulations are not direct numerical214

simulations, so the exact ratio of dissipation to irreversible buoyancy flux should not be taken215

very seriously. However, it does indicate that vertical mixing can be substantial in these flows as216

indicated by the erosion of the near-bottom stratification (FIG. 1b).217

2) ENERGY CHANGES WITH MEAN FLOW SPEED218

The same model set up was used to simulate flows with mean flows of U0 = 0.02, 0.05, 0.10,219

and 0.15 ms−1. Note that the three types of topography were not changed in these runs, so the220

BANDPASS topography, bandpassed between 600 m and 6 km scales, would not exactly match the221
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lower and upper bounds of the permissible internal waveband set by f/U0 < k < N/U0. With this222

in mind, it is clear that stronger forcing leads to stronger dissipations with all three topographies223

(FIG. 7). As with U0 = 0.10 ms−1, the BANDPASS topography has significantly less dissipation224

than the LOWPASS and FULL topography, by about a factor of 2 and 3 respectively. These differ-225

ences drop as higher mean flow speeds are simulated because the BANDPASS simulations have a226

steeper power law with U0 than the other two topographies.227

The power law of the dissipation versus U0 in the BANDPASS simulations of 1.95 is very close228

to the theoretically expected value of 2 (FIG. 7, light blue). The power laws for the LOWPASS and229

FULL simulations are less than this value, with the LOWPASS power law being 1.7 and the FULL230

power law slightly steeper at 1.76 (FIG. 7, purple and red respectively). For the LOWPASS case, a231

likely reason for the lower power law is that as U0 increases, the amount of blocking, and hence the232

strength of downstream hydraulic jumps decreases as Nh/U0 decreases. Hence the flow becomes233

more linear, and the non-linearity that drives the non-propagating drag decreases. The regime in234

these runs is Nh/U0 ≈ 25,10,5 and 3, so we are between the classical “linear” wave drag regime235

and the strongly non-linear wave drag regime.236

The dissipation in the FULL simulation exceeds the sum of the LOWPASS and BANDPASS dissi-237

pations, so the different wavenumbers in the topography obviously interact. The simplest explana-238

tion of this is that the large-scale elements in the FULL simulation locally accelerate or decelerate239

the flow over the small-scale elements. While the corresponding mean is close to U0, the mean of240 〈
U2〉>U2

0 so the dissipation due to the small-scale topography is greater than in the BANDPASS241

case. We can see evidence for this in the snapshots (FIG. 3a) where there appears to be more242

internal wave activity emanating from regions where the flow has been accelerated versus regions243

where it has been decelerated (recall that the velocity anomaly is plotted, so deep blue colors are244

getting close to zero velocity, not negative velocity).245
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4. Summary and Discussion246

Simulations of mean flow over topography that include large scales exhibit significant energy247

removal from the mean flow (and hence form drag) over and above that exerted by steady flow248

over the smaller scales. This is despite the fact that flow over the large scales cannot emit prop-249

agating internal waves because the topographic wavenumbers k < f/U0. In steady state, this250

non-propagating part of the wavefield would not extract energy from the mean flow under linear251

dynamics because the disturbances would be evanescent. However, at the large scales Nh/U0 > 1,252

and the flow is significantly non-linear and dissipative, with flow blocking upstream of topogra-253

phy, and breaking waves downstream. This means that at the parameter ranges considered here254

the dissipation due to the full-spectrum topography flows is more than 3 times as much as just the255

flow over high wavenumbers, a result that holds across a broad range of velocities over the same256

topography.257

a. Scaling energy loss from mean flow258

It would be desirable to predict the dissipation due to the large-scale topography. Due to the259

non-linearity and three dimensionality, this does not appear simple to do, and certainly there is260

no linear theory to appeal to like that used for the high-wavenumber flows. A rough estimate for261

large-Nh/U0 flows can be derived from the isolated topography case (Klymak et al. 2010), where262

the form-drag integrated along an obstacle can be approximated by:263

Fd = ρ0NU0h2
m

π

2

(
1+π

U0

Nhm
−2π

2
(

U0

Nhm

)2
)

(5)

Here, a reasonable value for an obstacle height is hm = 350 – 500 m. Turning this into an energy264

density requires assuming a spacing between obstacle peaks, which is approximately ∆x≈ 100 km265

(FIG. 1a). This rough calculation yields a dissipation of 17 – 33 mWm−2 for U0 = 0.1 ms−1, which266
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brackets the 23mWm−2 simulated for the LOWPASS topography simulation. The power law of267

this parameterization scales as U2
0 for large Nh/U0, but as Nh/U0 gets smaller the correction terms268

start to dominate, flattening the power law, as observed as U0 was increased (FIG. 7). Of course269

the assumptions that go into equation (5) are not valid at lower Nh/U0, so the analogy breaks270

down. Future effort should be aimed at parameterizing the large-scale drag and/or dissipation271

using a-priori calculations.272

b. Lateral inhomogeneity273

The reason we had to use such a large modeling domain is that the dissipation caused by the274

large-scale topography is spatially inhomogeneous (FIG. 8). Sensitivity tests on the 1-km coarse275

models indicated that dissipation results converged as the domain approached 100-km by 400-km,276

so that was what was used for the simulations above. The reason for that can be readily seen277

(FIG. 8a), where the regions of strong dissipation are on the scale of 50-100 km in the along-flow278

direction, and about 25 km in the cross-flow direction. Subsets of these regions have a strong279

potential to be biased.280

The distribution of the dissipation has important implications for oceanographic sampling. If281

an experiment were deployed similar to DIMES (St. Laurent et al. 2012) where on the order of282

34 vertical profiles could be accomplished, then the mean dissipation rate could be substantially283

biased as shown by a Monte Carlo sampling of the sample means (FIG. 8b, blue line). The median284

of this distribution is 0.6 the mean of the dissipation in the simulation, so the expected bias is285

relatively large and biased low, but there is a significant fraction of the Monte-Carlo means that286

are many times the actual mean. The problem is worse if the sampling is deterministic, or biased287

towards sampling hot spots, and of course a few individual moorings could be placed anywhere in288
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this region and get answers that are either far too low, or far too high (i.e. Waterman et al. 2013;289

Brearley et al. 2013).290

c. Resolution dependence: do coarser models have the dissipation?291

The argument for including a parameterization for drag and mixing due to “abbysal hills” is292

that numerical models cannot simulate these scales, and hence the extra drag and mixing should293

be added. In this paper, we argue that the drag and dissipation due to the large-scale (stochastic)294

topography is significantly larger. However, it is entirely possible that coarse models already295

simulate the turbulence and drag due to this large-scale part of the topographic spectrum because296

they are (partially) resolving them well-enough.297

We ran the same simulations over a range of lateral resolutions (1.0, 2.5, and 4.0 km) and298

vertical resolutions (between 10 m and 307 m). We used the LOWPASS bathymetry, so there299

is no topographic roughness at scales smaller than 6 km. We used the same nominal forcing300

noted above with flow speeds of U0 = 0.1 ms−1. Lateral and vertical model resolution strongly301

affect the resulting dissipation, and interestingly, the two effects counter each other (FIG. 9). For302

a very high lateral resolution by global-model standards (1 km) the agreement with the 100-m303

resolution runs drops as vertical resolution is coarsened, with the energy loss plateauing relatively304

quickly at about 0.6 of the loss in the high-resolution run. To compare with the energy budgets305

above, this is 15 kWm−1. If the model has a well-parameterized “abyssal hill” dissipation (i.e.306

BANDPASS) of 12 kWm−1, then the total dissipation inferred in this coarse model is 27 kWm−1,307

compared to 40 kWm−1, or 67%. This is not terrible disagreement, and the use of the “abyssal308

hill” parameterization will definitely help get the correct dissipation and drag.309

For coarser simulations, ∆x = 4 km, the energy loss is exaggerated at fine vertical resolutions310

(FIG. 9, blue line), and then suddenly drops to much less than the fine-resolution runs for ∆z >311
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200 m. This occurs as ∆z/∆x >
〈
(dh/dx)2〉1/2 the root-mean-square of the topographic slope312

(vertical colored lines in both plots). Therefore, the guidance for numerical modelers running at313

regional-scale resolutions is somewhat ambiguous. If models resolve the root-mean-squared of314

the topographic slope (approximately 2π/k0, where k0 is the topographic bandwidth parameter315

described above), then they will slightly over-predict mean-flow stratified drag. If the vertical316

resolution is too coarse, then they will not resolve this drag, and they will need to increase their317

drag significantly more than that just due to the parameterizations for “abyssal hills”.318

d. Concluding Remarks319

In conclusion, in the linear limit large-wavenumber topography should not generate radiating320

internal waves, and hence should not have drag or play a part in the energy budget. However,321

such topography is actually the dominant term in the energy budget because of non-linearity and322

turbulence in an ocean-relevant regime. Coarse-scale models are challenged to get this large-scale323

“non-propagating” drag right, though exactly whether they over- or under-predict the drag depends324

on the ratio of vertical to horizontal resolution. Finally, the dissipation due to the large-scale325

bathymetry is very spatially inhomogeneous, leading to a strong observational challenge. Further326

studies are planned to try to predict the low-wavenumber drag over the stochastic topography327

better, and to incorporate it into numerical models so that drag is not “double counted”.328
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Computing accounts for ONR. Example model setup and processing scripts are available at334
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bathymetry. Profiles are lateral integrals of the energy budget terms divided by the total402

domain area, not the area of the water at a given depth. The vertical integrals of the terms403
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FIG. 1. a) Cross sections of topography used at y = 50 km. The gray shading indicates the maximum and

minimum of the FULL topography across the whole domain. b) Background density profiles for the flow over

the three topographies at 220 h into the simulation. The nominal stratification of N0 = 10−3 s−1 is indicated with

the solid dashed line and most of the water column above z =−2750 m follows this curve during the simulation,

except for some water at the very top that has some modification (not shown). Near-bottom modification is

substantial, though mostly in a 350-m deep layer.
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FIG. 2. Spectra of topography used. The 1-D isotropic spectrum (gray dash) is the 1-dimensional version

of the 2-D spectrum used to generate the bathymetry used in the paper. The FULL bathymetry has bathymetric

variability at all the wavenumbers. The topography that make up the BANDPASS spectrum (blue) has been

bandpassed with 2π/6 km < |k| < 2π/0.6 km, following (Nikurashin et al. 2014). The LOWPASS spectrum

(purple) has been low-passed, removing variance for wavenumbers |k|> 2π/6 km. The low-wavenumber roll-

off, k0, is indicated with the vertical dashed line.
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FIG. 3. Snapshots at y=50 km of along-flow velocity anomaly (U −U0, where U0 = 0.1 ms−1) for a) the

FULL bathymetry, b) the LOWPASS bathymetry, and c) the BANDPASS bathymetry.
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and c) the BANDPASS bathymetry.
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propagating internal waves f <U0k < N.
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FIG. 6. Energy budget for a) FULL bathymetry, b) LOWPASS bathymetry and c) the BANDPASS bathymetry.

Profiles are lateral integrals of the energy budget terms divided by the total domain area, not the area of the water

at a given depth. The vertical integrals of the terms are indicated in the legend, again divided by the total domain

area to get an average rate of energy change per area. The dBPE/dt term is from changes in the background

potential energy, and it is a fraction of the residual, as indicated. The residual is not always positive at all depths,

reflecting modest inaccuracies in the energy budget.
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FIG. 7. Inferred dissipation for the BANDPASS, LOWPASS, and FULL topography simulations for four differ-

ent forcing speeds, U0. The power law versus the forcing is shown in the legend. The sum of the BANDPASS

and LOWPASS dissipations is shown as the grey line. The bottom panel shows the ratio of the dissipation in the

LOWPASS and FULL simulations to the BANDPASS simulations.
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FIG. 8. a) Vertical integral of the turbulence dissipation returned by the turbulence scheme used in the FULL

simulation. Note these dissipations are different than the energy residuals calculated above; however, the turbu-

lence scheme should yield useful estimates of inhomogeneity of the dissipation. The results have been normal-

ized by the mean dissipation over the figure. b) PDF of the vertical integral showing the very large tail of low

dissipations (red). Grey vertical lines bracket estimates that are one half and twice the actual mean. The PDF of

the results of a Monte Carlo computation of the mean using 34 random samples shows that random averages will

tend to underestimate the dissipation with a median value of 0.6 the actual mean dissipation (blue curve), though

some averages will overestimate if a hotspot is measured. 34 samples was chosen as the number of deep-sea

casts collected during the DIMES experiment St. Laurent et al. (2012).
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FIG. 9. Effect of changing lateral and vertical resolutions for the U0 = 0.1 ms−1 simulations over lowpass

bathymetry. Three curves are for different lateral resolutions, as noted. Dashed line is the ”true” lowpassed

value for very high vertical and horizontal resolution. The vertical lines are the value of the vertical resolution

of the simulation above which ∆z/∆x is greater than the root-mean-squared slope of the large-scale bathymetry

(≈ 2π/k0; equation (1)). When the slope is resolved then the simulations tend to over-predict the dissipation due

to the large-scale bathymetry, and under-predict when the vertical resolution is too coarse.
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